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In this tutorial, we set up a simple exact diagonalization (ED) code to study fractional Chern insulators (FCIs) in
a toy Hamiltonian on a kagome lattice model. The basic setup here can be generalized to study more complicated
systems, and improved to handle larger Hilbert spaces more efficiently.
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I. NON-INTERACTING KAGOME MODEL
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C

FIG. 1. Kagome lattice model.

For our example of a Chern insulator model, we consider the nearest-neighbour (n.n.) tight-binding model of
spinless fermions on the kagome lattice shown in Fig. 1. A similar family of models was introduced in Ref. [1], and
studied using exact diagonalization techniques in Refs. [2] and [3]. The unit cell is spanned by two primitive lattice
vectors

a1 = a

(
1
0

)
, a2 = a

(
1/2√
3/2

)
(1)

and the corresponding reciprocal lattice vectors are

b1 =
4π√
3a

(√
3/2

−1/2

)
, b2 =

4π√
3a

(
0
1

)
, (2)

where a is the lattice constant. The unit cell contains three orbitals (sublattices) α = A,B,C with corresponding
intra-unit-cell coordinates

τA =

(
0
0

)
, τB =

a

2

(
1
0

)
, τC =

a

2

(
1/2√
3/2

)
. (3)

The non-interacting Hamiltonian Ĥ0 consists of n.n. hopping with amplitude te±iφ, where the plus sign is taken along
the black arrows in Fig. 1. We consider periodic boundary conditions (PBCs) where the system consists of N1 (N2)
unit cells in the a1 (a2) direction. The total number of unit cells is N = N1N2.

1. Let c†R,α be the creation operator for unit cell R and orbital α. We use the Fourier transform convention

c†k,α =
1√
N

∑
R

eik·Rc†R,α. (4)

Show that Ĥ0 can be written as

Ĥ0 =
∑
k,α,β

hαβ(k)c
†
k,αck,β (5)

h(k) = t

 0 e−iφ(1 + e−ik1) eiφ(1 + e−ik2)
eiφ(1 + eik1) 0 e−iφ(1 + ei(k1−k2))
e−iφ(1 + eik2) eiφ(1 + ei(k2−k1)) 0

 , (6)
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FIG. 2. Kagome tight-binding model for t = 1 and φ = 5π/4. Top row: Energy dispersion for each band. The bands are
ordered n = 0, 1, 2 in increasing energy. Bottom row: Berry curvature for each band. The Berry curvature f(k) is normalized
here such that e.g. a Chern C band with uniform curvature would have f(k) = C. In all plots, k = 0 corresponds to the
corners. Quantities are calculated on a N1 = N2 = 24 mesh.

where h(k) is the Bloch Hamiltonian (α = A,B,C corresponds to matrix index 0, 1, 2 respectively). Above, we
have parameterized the Bloch momentum as

k =
k1
2π

b1 +
k2
2π

b2. (7)

[Note that h(k) does not carry information about the intra-cell coordinates τσ. This can be traced back to our
Fourier transform convention in Eq. 4. We’ll come back to this point later.]

2. From now on, we set t = 1 for simplicity unless otherwise stated. Write a code that generates the dispersion
ϵn(k) and eigenvectors un,α(k), which satisfy∑

β

hαβ(k)un,β(k) = ϵn(k)un,α(k), (8)

where n = 0, 1, 2 indexes the bands by increasing energy. Plot the dispersion of this Bloch Hamiltonian across
the Brillouin zone (BZ) for some values of φ. See the top row of Fig. 2 for example band structures for φ = 5π/4.
For what values of φ does the model have gapless points?

Consider the case φ = 0. What is the degeneracy of the lowest energy eigenvalue on a periodic system with
N1 ×N2 unit cells? Can you come up with an argument to explain this degeneracy? See Ref. [4] for hints.

3. Recall the expressions for the Berry connection An(k), Berry curvature Fn(k), and Chern number Cn for a
Bloch band n

An(k) = −i ⟨un(k)| ∇k |un(k)⟩ (9)

Fn(k) = ∂kxAn,y(k)− ∂kyAn,x(k) (10)

Cn =
1

2π

∫
d2kFn(k). (11)

Why might these formulas be difficult to directly implement in numerical calculations?
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4. We can follow Ref. [5] and use a discretized procedure for computing the Berry curvature and Chern number
on a momentum grid. In particular for the torus (the system has PBCs so it has the real-space topology of a
torus) with dimensions N1 ×N2, the Bloch momenta are

k = k̃1b1/N1 + k̃2b2/N2, (12)

with k̃1 = 0, . . . , N1 − 1 and k̃2 = 0, . . . , N2 − 1. Define the link variables (dropping the band index n)

Uµ(k) =
⟨u(k)|u(k + dµ⟩
| ⟨u(k)|u(k + dµ⟩ |

, (13)

where µ = 1, 2, k is a momentum on the grid, and dµ is the minimal grid spacing in direction µ. The lattice
field strength is

F̃ (k) = −i ln
[
U1(k)U2(k + d1)U1(k + d2)

−1U2(k)
−1

]
(14)

−π < F̃ (k) ≤ π. (15)

For small dµ, the above expression becomes proportional to the Berry curvature. F̃ (k) is the Berry phase for
going around the plaquette with corners k,k + d2,k + d1 + d2,k + d1. The discretized Chern number is given
by

C̃ =
1

2π

∑
k

F̃ (k). (16)

Convince yourself that F̃ (k) is manifestly gauge-invariant. It can also be shown that C̃ is quantized to integers.
Why is it important that the grid spacing of the momentum mesh is sufficiently fine?

5. Implement the discretized formulas for the kagome model, and plot C̃ as a function of φ for the three bands. You
can check that you have generated Fn(k) correctly by comparing with the bottom row of Fig. 2 for φ = 5π/4.
For what values of φ can you find a narrow Chern band with relatively homogeneous Berry curvature?

6. *** Let’s now consider open boundary conditions (OBCs) along one direction, but keeping PBCs along the
other direction. For concreteness, let the system be open in the a1 direction with N1 unit cells, and periodic
with N2 unit cells along a2. The Bloch Hamiltonian h(k2) is now only diagonal in k2. Derive the expression for
h(k2). Compute the band structure as a function of k2 for φ = 5π/4. You should find gapless chiral modes that
cross the bulk band gaps. Plot the real-space probability density for a state belonging to one of these chiral
branches, and discuss its localization along the edge.

7. *** So far, our momentum meshes have been restricted to the form Eq. 12, with N1 and N2 being the only free
parameters. One way to generalize this is to consider threading fluxes through the handles of the torus. This is
useful for demonstrating the correct spectral flow of eigenvalues. What is the momentum mesh corresponding
to fluxes ϕ1 and ϕ2?

8. *** Let’s return to the Fourier transform convention for the Bloch basis. Note that Eq. 4 is periodic under
k → k +G, where G is a reciprocal lattice vector. A periodic gauge is convenient for numerical calculations,
where momenta k on operators can be ‘pulled-back’ to the BZ without worrying about additional unitary
transformations.

We could consider a different convention

c̃†k,α =
1√
N

∑
R

eik·(R+τα)c†R,α, (17)

which accounts for the intra-cell coordinate of the orbitals. How does this sublattice-dependent phase affect
the Bloch Hamiltonian? For example, how does the Bloch Hamiltonian in this new convention behave under
k → k+G? Show that the resulting Berry curvature of a given band n changes, but the Chern number remains
invariant. See e.g. Ref. [6] for more discussion of the ‘lattice geometry’ dependence of certain quantities.
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II. MANY-BODY HAMILTONIAN AND MATRIX ELEMENTS

In this section, we consider the band-projected interacting model for a system of tight-binding fermions. We consider
spinless fermions—alternatively we can imagine the spins to be polarized. A lattice model, such as that studied in
Sec. I, is characterized by Bravais lattice vectors a1 and a2, with corresponding reciprocal lattice vectors b1 and b2.
A unit cell contains orbitals indexed by α. We will be interested in systems with PBCs characterized by torus side
lengths N1 and N2 (in terms of a1 and a2 respectively), and discrete translation invariance under lattice vectors R.
A general extended Hubbard-like interaction can be written

Hint =
1

2

∑
RR′αβ

V αβ
R−R′ : nR,αnR′,β : (18)

where nR,α = c†R,αcR,α, and : Ô : is the normal-ordering operation that brings all creation operators to the left of

annihilation operators in Ô, keeping track of fermionic signs. Note that V αβ
R = V βα

−R. [The choice of normal-ordering
for realistic models of actual materials can be a tricky issue, as e.g. demonstrated by Ref. [7] for rhombohedral
pentalayer graphene twisted on hBN—we ignore such problems here.]

1. Using the Fourier transform convention of Eq. 4, show that the interaction Hamiltonian can be expressed in
momentum space as

Hint =
1

2N

∑
k1k2k3k4αβ

δ̃k4=k1+k2−k3V
αβ
k1k2k3k4

c†k1α
c†k2β

ck4βck3α (19)

V αβ
k1k2k3k4

=
∑
R

ei(k3−k1)·RV αβ
R , (20)

where we define a symbol δ̃k4=k1+k2−k3
that enforces the ‘on-shell’ condition of crystal momentum conservation

(i.e. k1 + k2 should equal k3 + k4 modulo a reciprocal lattice vector). When on-shell, we have the following
identities

V αβ
k1k2k3k4

= V βα
k2k1k4k3

= (V αβ
k3k4k1k2

)∗. (21)

2. We now want to work in the band basis described by Bloch eigenvectors un,α(k) (see Eq. 8) and corresponding

creation operators d†k,n. Express the interaction Hamiltonian in the band basis.

3. In the following, we will be interested in projecting the Hamiltonian into some specific band n. Doing so will
significantly reduce the many-body Hilbert space dimension and the computational difficulty. If there are sizable
single-particle gaps separating the band of interest from other bands, then such projection may be physically
justified. For some situations, it may not be justified at all!

Operationally, we interpret projection as simply restricting the band indices to band n for the purposes of this
tutorial. [This implicitly makes an assumption about the role of the other bands]. Show that the interaction
Hamiltonian is

Hint =
1

2N

∑
k1k2k3k4

δ̃k4=k1+k2−k3Uk1k2k3k4d
†
k1
d†k2

dk4dk3 (22)

Uk1k2k3k4
=

∑
αβ

u∗
α(k1)u

∗
β(k2)uα(k3)uβ(k4)V

αβ
k1k2k3k4

(23)

where we have hidden the band index n above. When on-shell, we have the relations

Uk1k2k3k4
= Uk2k1k4k3

= (Uk3k4k1k2
)∗. (24)

Write some code that generates Uk1k2k3k4 for the kagome model (see Sec. I) with n.n. Hubbard interactions

of strength V , i.e. V αβ
R−R′ = V in Eq. 18 if sites (R, α) and (R′, β) are nearest neighbours. Verifying Eq. 24

provides a quick check for any bugs in the code.

To check that your code is working fine, we provide sample matrix elements Uk1k2k3k4
in the text files

Uint N 3 4.txt, Uint N 3 5.txt and Uint N 4 4.txt for (N1, N2) = (3, 4), (3, 5), (4, 4) respectively. These
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correspond to V = 1 and projection onto the lowest (n = 0) band of the Kagome model with t = 1, φ = 5π/4.

Each row in the text files corresponds to [k̃1,1, k̃1,2, k̃2,1, k̃2,2, k̃3,1, k̃3,2,ReUk1k2k3k4
, ImUk1k2k3k4

]. We use the

momentum labelling convention of Eq. 12, so that e.g. k1 = k̃1,1b1/N1 + k̃1,2b2/N2, etc. The momentum k4 is
not explicitly mentioned because it is fixed by momentum conservation.
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III. EXACT DIAGONALIZATION

In this section, we discuss some details of how to implement a basic ED code. Note that the priority here is to gain
some understanding of the challenges involved, and to get a working code up and running. Hence, the code written
here will by no means be particularly efficient! The code examples and data will be given in Python, but feel free to
use other programming languages. We will assume a one-band projected Hamiltonian (see Sec. II) on a lattice with
N = N1 ×N2 unit cells, and work directly in momentum space (why?).

1. The main limitation of ED is the rapid growth of the Hilbert space as the system size increases. For a system
of N unit cells, what is the total many-body Hilbert space dimension? What is the maximum size of N for
which you could store the full many-body wavefunction on your computer?

Clearly, it is imperative to cut down the effective Hilbert space dimension, which would reduce the
memory requirements and the time needed for matrix diagonalization. This can be achieved by considering the
symmetries of the problem, which will block-diagonalize the many-body Hamiltonian. Then, each block can
be diagonalized separately (and perhaps only a subset of the symmetry sectors are required). The simplest
symmetry to incorporate is the Uc(1) symmetry corresponding to electron number conservation. What is the
many-body Hilbert space dimension for the sector with Ne electrons? For N = 15 and Ne = 6, you should find
a Hilbert space dimension of 5005.

Consider a filling factor of ν = Ne/N = 1/3. What is the maximum system size for which you could
store the many-body wavefunction on your computer? If there are other internal symmetries, then these could
be exploited as well. For instance if there is a spin degree of freedom and Sz conservation, then the symmetry
sectors can be labelled (Ne, Sz).

The systems of interest here also satisfy a discrete translation invariance, such that the Hamiltonian de-
composes into N = N1 × N2 many-body momentum sectors labelled by Ktot. Eq. 12. In this case, there is
no analytical formula for the Hilbert space dimension of a given (Ne,Ktot), but can you come up with an
approximate estimate? Write some code that exactly computes the dimension for a given (Ne,Ktot). For
N1 = 3, N2 = 5 and Ne = 6, you should find a Hilbert space dimension D = 335 for Ktot = (0, 0) and D = 333
for Ktot = (1, 4). Note that rotational symmetries and other point group symmetries could be exploited to
further cut down the Hilbert space, but this is beyond the scope of this tutorial.

2. Let’s now prepare for ED by specifying the many-body basis in more detail. We build the basis by considering
Fock states where each single-particle orbital (which is uniquely labelled by k in our one-band problem) is
either occupied or unoccupied. Hence, each basis state is uniquely specified by the occupation numbers nk = 0, 1.

We need to worry about two more things: 1) a convenient representation of each basis state for the nu-
merics; 2) a canonical ordering of operators to account for the fermionic sign (we are dealing with electrons
here). It will be convenient to label momenta using the quasi-1D parameterization K defined by

K = k̃2 +N2k̃1 (25)

k = k̃1b1/N1 + k̃2b2/N2, (26)

with k̃1 = 0, . . . , N1 − 1 and k̃2 = 0, . . . , N2 − 1. So K runs from 0, . . . , N − 1.

Choose a canonical ordering of single-particle orbitals for specifying the basis Fock states. One conven-
tion is to order the creation operators so that lower values of K are placed to the left, such that a generic Fock
basis state (with Ne particles) would be

d†K0
d†K1

. . . d†KNe−1
|vac⟩ with K0 < K1 < . . . < KNe−1. (27)

There are several ways to represent a given Fock basis state in the code, depending on the program-
ming language and requirement for efficiency. In the Python example, we directly encode using ordered tuples
(K0,K1, . . .) for simplicity. But it is most common to represent a Fock state using an integer

x[nK ] =

N−1∑
0

nK × 2K (28)
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which is amenable to various numerical tricks for performing certain operations—see e.g. Ref. [8]. In a binary
representation, the nK directly appear as 0’s and 1’s in the bitstring.

Whichever representation you use, you should be comfortable performing the following operations in
your code:

• For a given representation (e.g. an integer if using Eq. 28) of some Fock state, determine its particle number
Ne and total momentum Ktot.

• From some initial Fock basis state, find the representation of the final state (if any) obtained by acting

with d†k or dk, including the fermionic sign.

3. Write some code that generates the basis list corresponding to a fixed (Ne,Ktot). Let the dimension of the
Hilbert subspace be DNe,Ktot . Each basis state should be assigned a unique index in 0, . . . ,DNe,Ktot − 1 for the
purposes of building the Hamiltonian in the next step. Also write a routine that returns, starting from an initial
Fock state, the final Fock state, its unique index, and the fermionic sign from acting with a Ktot-conserving

operator d†k0
d†k1

dk3dk2 (i.e. k3 = k0 + k1 − k2 modulo a recpirocal lattice vector). Check that the final state in
the code always maintains the same particle number Ne and total momentum Ktot.

4. We are now ready to build the Hamiltonian. Let’s review the projected Hamiltonian. The total interacting
Hamiltonian that we will study is

Htot = κH0 +Hint (29)

H0 =
∑
k

ϵ(k)d†kdk (30)

Hint =
1

2N

∑
k1k2k3k4

δ̃k4=k1+k2−k3
Uk1k2k3k4

d†k1
d†k2

dk4
dk3

(31)

where H0 is the single-particle dispersion and Hint is the interaction taken from Eq. 22, where the matrix
elements satisfy Eq. 24. Recall that the symbol δ̃k4=k1+k2−k3 enforces the ‘on-shell’ condition of crystal
momentum conservation (i.e. k1 + k2 should equal k3 + k4 modulo a reciprocal lattice vector). We have
introduced an artificial ‘band-flattening’ parameter κ to control the bandwidth. It is common in many FCI
studies of model Hamiltonians to work with κ = 0 which mimics the flat dispersion of a Landau level.

As a warm-up, write some code that generates H0 in some given (Ne,Ktot) sector, given some input band
dispersion ϵ(k). For simplicity in this tutorial, you can store the entire matrix as a dense DNe,Ktot

× DNe,Ktot

matrix, since the Hilbert subspaces we consider here are small enough to perform full diagonalization. For
larger Hilbert spaces, one would resort to sparse matrix techniques such as the Lanczos algorithm. In this case,
one would use a sparse matrix data format, or forgo storing the Hamiltonian all together in some situations.

5. We now turn to the interaction Hamiltonian Hint (Eq. 31). Write some code to construct the matrix
representation of Hint in some (Ne,Ktot) sector, given a set of matrix elements Uk1k2k3k4

. The Uk1k2k3k4

could be e.g. read in from a formatted text file. Either generate the matrix elements yourself, or use the
reference matrix elements described at the end of Sec. II. When populating the entries of Hint, ensure that
you account for any fermionic signs. Convince yourself that the interaction Hamiltonian becomes sparser as
the system size increases for a fixed filling ν = Ne/N . As an intermediate check, you should find that for
N1 = 3, N2 = 5, Ne = 5,Ktot = (0, 0), Hint is a 201× 201 matrix with 7251 non-zero entries.

At the moment, there are multiple terms in Eq. 31 that could connect a given pair of many-body Fock
states. You may find it useful when generating the interaction Hamiltonian matrix to first recast the sum as
over ordered ‘creation pairs’ k1 < k2 and ordered ‘annihilation pairs’ k3 < k4, where some ordering < on Bloch
momenta has been chosen (e.g. the canonical ordering when defining the Fock basis states using the linearized
momentum of Eq. 25). Show that we can then write

Hint =
1

N

∑
k1k2k3k4 s.t. k1<k2 and k3<k4

δ̃k4=k1+k2−k3
Ũk1k2k3k4

d†k1
d†k2

dk4
dk3

(32)

Ũk1k2k3k4
= Uk1k2k3k4

− Uk1k2k4k3
= Ũk2k1k4k3

= −Ũk1k2k4k3
= (Ũk3k4k1k2

)∗. (33)
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FIG. 3. Full momentum-resolved ED spectrum for the Kagome tight-binding model with t = 1, φ = 5π/4 and n.n. Hubbard
interactions of strength V = 1 projected onto the lowest band. We use the band-flattened limit κ = 0. Left: N1 = 3, N2 =
4, Ne = 4. Right: N1 = 3, N2 = 5, Ne = 5.

6. For the kagome model described in Secs. I and II, generate the many-body spectrum across all momentum
sectors for Ne = 4 electrons, system size N1 = 3, N2 = 4, kagome hopping phase φ = 5π/4, and n.n. interaction
strength V = 1. Project to band n = 0 (the lowest band) using band index restriction (i.e. ignore any possible
effects from the other bands), and work in the flattened limit κ = 0. Do the same for N1 = 3, N2 = 5, Ne = 5.
Plot the full momentum-resolved many-body spectrum, and compare with Fig. 3. What features do you notice
about the entire spectrum?

7. In the previous exercise, we computed the many-body spectrum for ν = 1/3 filling of a flat Chern band. Do we
have an FCI ground state, in particular the FCI analog of a 1/3 Laughlin state? How can we tell? The simplest
signature of an FCI is its topological degeneracy on a torus. Our calculation is on a torus since we use periodic
boundary conditions in both directions. Therefore, we expect three quasi-degenerate ground states, separated
from higher states by a gap. As the system size N increases, the splitting between the three quasi-degenerate
ground states should exponentially decrease, and the gap ∆3 to excited states should converge to a finite value.
Define the ‘spread’ δ3 as the bandwidth of the lowest three states (across all momentum sectors). Compute the
FCI spread/gap ratio δ3/∆3 for your ED spectra.

8. We can do better and use the momentum-resolved information. In particular, we are interested in the
momentum-dependent quasi-degeneracy NFCI(k1, k2) of ground states in the many-body momentum sector
(k1, k2). There is a procedure for determining NFCI(k1, k2) from the degeneracy NFQH(k′1, k

′
2) of the analogous

fractional quantum Hall state on the torus with N = N1 ×N2 fluxes. The formula is (see e.g. Ref. [9])

NFCI(k1, k2) =

Ne−1∑
k′
1,k

′
2=0

M1M2

M0
NFQH(k′1, k

′
2)δk′

1modM1,k1modM1
δk′

2modM2,k2modM2
(34)

M1 = GCD(Ne, N1), M2 = GCD(Ne, N2), M0 = GCD(Ne, N). (35)

For the ν = 1/3 Laughlin state with N = 12 fluxes, you will need to use NFQH(2, 2) = 1 (the other values are
zero for k′1, k

′
2 < Ne). What are the ground state momenta for the ν = 1/3 FCI lattice for the 3× 4 lattice? Do

the same for the ν = 1/3 FCI on the 3× 5 lattice, where you need to use NFQH(0, 0) = 1. Are these consistent
with your ED spectra? The definition of the FCI spread δ3 should be refined to account for the expected
many-body momenta of the putative topological quasi-degenerate ground states.

We should be careful about other (less exotic) phases that could also manifest the same momentum-
resolved quasi-degeneracy. The system sizes we have studied are all a multiple of 3 in one direction. Consider
a charge density wave (CDW) at ν = 1/3 that triples the unit cell along this direction. What would be the
expected ground state momenta of such a CDW? Could such a CDW be distinguished from an FCI solely on
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the basis of the momentum-resolved quasi-degeneracy? See e.g. Ref. [10] for more discussion on diagnosing
spontaneous symmetry-breaking in ED, including continuous symmetries.

9. We can study the properties of the ground states directly to obtain more evidence in favor of an FCI state. One
easy-to-implement diagnostic is the average occupation ⟨nk⟩ for a many-body wavefunction. Write some code
that computes this quantity, averaged over the three quasi-degenerate states. We expect this to be uniform and
close to 1/3 across the BZ for an FCI. On the other hand, a CDW is expected to have a strongly fluctuating ⟨nk⟩.

For the N1 = 3, N2 = 5, Ne = 5 calculation, you should find the following average of ⟨nk⟩ over the
three quasi-degenerate states:
[0.38646021 0.34280379 0.31814227 0.31814227 0.34280379 0.3238678 0.33192043 0.32271955
0.3365834 0.33073265 0.3238678 0.33073265 0.3365834 0.32271955 0.33192043].

10. A striking feature of FCIs and fractional quantum Hall states is the fractional charge and statistics of their
quasiparticle excitations. Compute the ED spectrum across all momentum sectors for N1 = 4, N2 = 4, Ne = 5.
How many quasiholes of the ν = 1/3 state does this correspond to? The spectrum should clearly separate into
a low-lying manifold of quasihole excitations, and higher energy non-universal states.

Count the number of low-lying states for each Ktot. The mapping from FQH to FCI states leads to
the prediction that there is one low-lying state per Ktot. Does this match your numerical results?
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