Molecular Pairing in TBG Superconductivity

Zhi-Da Song (宋志达), songzd@pku.edu.cn

Refs:

[Model]: Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett. **129**, 047601 (2022) [Kando Phase]: G.-D. Zhou, Y.-J. Wang, N. Tong, and Z.-D. Song, *Kondo Phase in Twisted Bilayer Graphene*, Phys. Rev. B **109**, 045419 (2024). [Pairing mechanism]: Y.-J. Wang, G.-D. Zhou, S.-Y. Peng, B. Lian, and Z.-D. Song,, arXiv:2402.00869 (2024)

arXiv:2402.00869 (2024)

Molecular Pairing in Twisted Bilayer Graphene Superconductivity

Yi-Jie Wang,^{1, *} Geng-Dong Zhou,^{1, *} Shi-Yu Peng,² Biao Lian,³ and Zhi-Da Song^{1,4,5,†}

¹International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China ²Applied Physics & Materials Science, California Institute of Technology, Pasadena, California 91125, USA ³Department of Physics, Princeton University, Princeton, New Jersey 08544, USA ⁴Hefei National Laboratory, Hefei 230088, China ⁵Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

(Dated: February 2, 2024)

We propose a theory for how the weak phonon-mediated interaction ($J_A = 1 \sim 4 \text{meV}$) wins over the prohibitive Coulomb repulsion ($U = 30 \sim 60 \text{meV}$) and leads to a nematic superconductor in magic-angle twisted bilayer graphene (MATBG). We find the pairing mechanism akin to that in the A₃C₆₀ family of molecular superconductors: Each AA stacking region of MATBG resembles a C₆₀ molecule, in that optical phonons can

Single-particle bands

The Bistritzer-MacDonald (BM) continuum model (single valley):

$$H^{K}(\boldsymbol{r}) = \begin{pmatrix} -iv_{F}\boldsymbol{\sigma}\cdot\nabla & T(\boldsymbol{r}) \\ T^{\dagger}(\boldsymbol{r}) & -iv_{F}\boldsymbol{\sigma}\cdot\nabla \end{pmatrix}$$

Interlayer hopping: $T(\mathbf{r}) = \sum_{j=1}^{3} T_j e^{i\mathbf{q}_j \cdot \mathbf{r}}$,

$$T_j = w_0 \sigma_0 + w_1 \Big[\sigma_x \cos \frac{2\pi (j-1)}{3} + \sigma_y \sin \frac{2\pi (j-1)}{3} \Big] \; .$$

 w_0 : AA hoping $\leq w_1$: AB/BA hoping

Experimental facts

 $V_{\rm b}$ (mV)

^K Bistritzer, MacDonald 2011PNAS

1.

2.

3.

4.

5.

6

7.

8.

arXiv:2402.00869 (2024) **Experimental facts about the SC**

Nematicity

V-shaped gap

Nodal SC fit

- STS

- Nodal SC

∆ = 0.90 meV

 $\Gamma = 0.07 \text{ meV}$

Δ

2

b

(Su) //p//p

30

20

10

-6

Device A

200 mK, 0 T

 $V_{\rm c} = -25.8 \, {\rm V}$

-2

0

Oh et al. (2021) Nature

V_s (mV)

300 mK

367 mK

418 mK

450 mł

485 mK

576 mK

630 mK

-1

0

 $V_{\rm s}$ (mV)

Oh et al. (2021) Nature

130 - 313 mK

120

100

90

(S) 485 mK 1) 110 - 528 mK 576 mK

 $V_{a} = -21.8 \text{ V}$

707 mK

730 mK

790 mK

810 mK

870 mK

960 mK

T = 1.3 K

Small coherence length

Coexistence with strong correlation

Enhanced by suppressing correlation •

Liu et al. (2021) Science Stepanov et al. (2018) Nature Saito et al. (2020) Nature Physics

Enhanced by SOC

Arora et al. (2020) Nature

Cao et al. (2018) Nature

Difficulties in understanding the SC

- Cuprates-like mechanism?
 - ✓ Coexistence with correlation
 - X No magnetism around SC
- BCS pairing?
 - ✓ Enhanced by suppressing U, by SOC
 - X Nematicity
 - X V-shaped gap
 - X Pairing (0.1-1meV) << U (~30-60meV)
 - X BEC-like feature
- Retardation effect?
 - Small bandwidth (D=1~10meV), comparable or higher ω_D
 - X Barely reduced pseudo potential $\mu^* = \frac{\mu}{1 + \mu \ln D/\omega_D}$
 - X BEC-like feature ...

M. Capone, et al., Rev. Mod. Phys. 81, 943 (2009).

We find nematicity is also possible in this analogy.

Construction of Topological Heavy-Fermion Model

- Summary of the correlation physics
- Pairing mechanism

Superconductor phase

Experiments suggesting existence of *local moments*

0.6

0.4

0.2

Coulomb blockade seen in STM

Wong et al. 2020, Xie et al. 2019, Choi et al. 2019, Kerelsky et al. 2019, Jiang et al. 2019,

Pomeranchuk effect

large entropy in the ordered phase,

- which disappear under magnetic field
- \rightarrow loosely coupled local moments

Saito et al. 2021, Rozen et al. 2021

Experiments suggesting existence of delocalized electron states

Metallicity & Superconductivity

Landau fans

compressibility ~ \sqrt{n}

Transport & Hysteresis, Efetov group 2020

Fragile and stable topology

Crystalline symmetries in a single valley

- MSG 177.151 P6'2'2 ← C3z, C2zT, C2x
- Valley-U(1)
- Time-reversal

Bistritzer, MacDonald 2011PNAS

Song et al. 2019PRL, Po et al. 2019PRB, Liu, Dai et al. 2019PRB

	Γ_1	Γ_2	Γ_3		M_1	M_2		K_1	K_2K_3
E	1	1	2	E	1	1	E	1	2
$2C_3$	1	1	-1	C'_2	1	-1	C_3	1	-1
$3C'_2$	1	-1	0				C_{3}^{-1}	1	-1

Bistritzer, MacDonald 2011PNAS

Bradlyn et al. 2017Nature, Po et al. 2017NC

Band representations (local orbitals)

Elcoro et al. 2021NC: we derive all magnetic BRs & topological indices

Wyckoff pos.		1a (000)		$2c\left(\frac{1}{3}\frac{2}{3}0\right), \left(\frac{2}{3}\frac{1}{3}0\right)$			
Site sym.	6'22', 32			32, 32			
EBR	$[A_1]_a \uparrow G$	$[A_2]_a \uparrow G$	$[E]_a \uparrow G$	$[A_1]_c \uparrow G$	$[A_2]_c \uparrow G$	$[E]_c \uparrow G$	
Orbitals	S	p_z	p_x, p_y	S	p_z	p_x, p_y	
$\Gamma(000)$	Γ_1	Γ_2	Γ_3	$2\Gamma_1$	$2\Gamma_2$	$2\Gamma_3$	
$K\left(\frac{1}{3}\frac{1}{3}0\right)$	K_1	K_1	K_2K_3	K_2K_3	K_2K_3	$2K_1 \oplus K_2K_3$	
$M\left(\frac{1}{2}00\right)$	M_1	M_2	$M_1 \oplus M_2$	$2M_1$	$2M_2$	$2M_1 \oplus 2M_2$	

ightarrow Obstruction to two-band symmetric & local lattice models

Two-band models where C2zT becomes nonlocalKang et al. 2018PRX,Kang et al. 2019PRL, Koshino et al. 2018PRX, Yuan et al. 2018PRB

(Fragile) topology Po et al. 2019PRB, Ahn 2019 PRX, Song et al. 2019PRL

Construction of the heavy fermion model

Our strategy: Step I. Where does the local states come from?

Wong et al. 2020, Xie et al. 2019, Choi et al. 2019, Kerelsky et al. 2019, Jiang et al. 2019,

Suppose we can replace $\Gamma_1 + \Gamma_2$ by Γ_3 , then flat bands match px,py orbitals at triangular lattice

Wyckoff pos.		1a (000)	
Site sym.		6'22', 32	
EBR	$[A_1]_a \uparrow G$	$[A_2]_a \uparrow G$	$[E]_a \uparrow G$
Orbitals	S	p_z	p_x, p_y
$\Gamma(000)$	Γ_1	Γ_2	Γ_3
$K\left(\frac{1}{3}\frac{1}{3}0\right)$	K_1	K_1	K_2K_3
$M\left(\frac{1}{2}00\right)$	M_1	M_2	$M_1 \oplus M_2$

1a is AA-stacking region

We hence introduce trial Guassian-type WFs, $|W'_{\alpha=1,2}\rangle \sim |p_x\rangle \pm i|p_y\rangle$ and computed $\sum_{\alpha} |\langle W'_{\alpha} | \psi_n(k) \rangle|^2$ for each band

Large overlap \rightarrow The flat bands at $k \neq 0$ are almost the trial WFs

PRL 129, 047601 (2022), PRB 109, 045419 (2024), arXiv:2402.00869 (2024) Construction of the heavy fermion model

The quadratic touching.

Hc has to be gapless: Since the WFs are trivial, H^c must have 4n+2 ($n \in \mathbb{N}$) Dirac points due to the **symmetry anomaly**.

The quadratic touching is equivalent to two DPs.

 $H^c = P_c H^{BM} P_c, \quad P_c = 1 - P_f$

We consider the lowest six bands P_f contains Γ_3 at k=0

→ P_c contains $\Gamma_3 + \Gamma_1 + \Gamma_2$

 $\Gamma_{3} (L=\pm 1) \qquad \Gamma_{1} + \Gamma_{2} (L=0)$ $H^{(c,\eta)} = \begin{pmatrix} 0_{2\times 2} & v_{\star}(\eta k_{x}\sigma_{0} + ik_{y}\sigma_{z}) \\ \hline v_{\star}(\eta k_{x}\sigma_{0} - ik_{y}\sigma_{z}) & M\sigma_{x} \end{pmatrix}$

 $\eta=\pm$ is the valley index

Determine the parameters:

$$H_{ab}^{(c,\eta)}(k) = \langle u_a^{\eta}(0) | H_{BM}^{\eta}(k) | u_b^{\eta}(0) \rangle$$
 a,b=1...4

BM model, linear in k \rightarrow $H^{(c,\eta)}$ is linear in k

M=3.7meV 𝔃_★ = −4.3eV· Å

PRL 129, 047601 (2022), PRB 109, 045419 (2024), arXiv:2402.00869 (2024) Construction of the heavy fermion model

Our strategy: Step III. Couple the two parts

$$\hat{H}_{0} = \sum_{|\mathbf{k}| < \Lambda_{c}} \sum_{aa'\eta s} H_{aa'}^{(c,\eta)}(\mathbf{k}) c_{\mathbf{k}a\eta s}^{\dagger} c_{\mathbf{k}a'\eta s} + \frac{1}{\sqrt{N}} \sum_{|\mathbf{k}| < \Lambda_{c}} \sum_{\alpha a\eta s} \left(e^{i\mathbf{k}\cdot\mathbf{R} - \frac{|\mathbf{k}|^{2}\lambda^{2}}{2}} H_{\alpha a}^{(fc,\eta)}(\mathbf{k}) f_{\mathbf{R}\alpha\eta s}^{\dagger} c_{\mathbf{k}a\eta s} c_{\mathbf{k}a\eta s} + h.c. \right)$$

$$\Lambda_{c}: \text{ cutoff for the conduction band}$$

$$Large enough k \rightarrow \text{ decoupled}$$

$$Only \text{ coupling around Gamma is relevant}$$

$$\frac{f \cdot \text{electron}}{AA} \quad c \cdot \text{electron}$$

$$AA \quad f \cdot \text{electron}$$

$$AA \quad AB \quad a=1,2 \text{ c-electrons} \quad \Gamma_{3} \quad \pm 1$$

$$a=3,4 \text{ c-electrons} \quad \Gamma_{3} \quad \pm 1$$

$$H^{(c,\eta)} = \begin{pmatrix} 0_{2\times2} & v_{\star}(\eta k_{x}\sigma_{0} + ik_{y}\sigma_{z}) \\ v_{\star}(\eta k_{x}\sigma_{0} - ik_{y}\sigma_{z}) \quad M\sigma_{x} \end{pmatrix} \quad H^{(cf,\eta)}_{a\alpha}(k) = \langle u_{a}^{\eta}(0) | H_{BM}(k) | v_{a}^{\eta}(0) \rangle = \begin{pmatrix} \gamma + v_{\star}'(\eta k_{x}\sigma_{x} + k_{y}\sigma_{y}) \\ 0_{2\times2} \end{pmatrix}$$

γ=-24.8meV ν'_⋆ =1.6eV· Å

PRL 129, 047601 (2022), PRB 109, 045419 (2024), arXiv:2402.00869 (2024) Construction of the heavy fermion model

Recover the BM model bands

For small k
$$H^{\eta}(k) = \begin{pmatrix} 0_{2\times 2} & v_{\star}(k_{x}\eta\sigma_{0} + ik_{y}\sigma_{z}) & \gamma + v_{\star}'(k_{x}\sigma_{x} + k_{y}\sigma_{y}) \\ v_{\star}(k_{x}\eta\sigma_{0} - ik_{y}\sigma_{z}) & M\sigma_{x} & 0_{2\times 2} \\ \hline \gamma + v_{\star}'(k_{x}\eta\sigma_{x} + k_{y}\sigma_{y}) & 0_{2\times 2} & 0_{2\times 2} \end{pmatrix}$$

J: Ferromagnetic coupling between U(4)-moments (defined later)

Density-density between f- and c-

 \rightarrow Only change relative energy between f- and c-

- Construction of Topological Heavy-Fermion Model
- Summary of the correlation physics
- Pairing mechanism

Superconductor phase

Results from NRG+DMFT

4

3

1

0

Fillings

 ε_{c1}

- E_{c3}

E(meV)

2

-80

V

3

^(u)300

 $\mu(meV)$

250

200

150

100

50

()

-50

PRL 129, 047601 (2022), PRB 109, 045419 (2024), arXiv:2402.00869 (2024) ***Pomeranchuck effect" around nu=+-1**

Pomeranchuk effect

large entropy in the ordered phase, which disappear under magnetic field

→ loosely coupled local moments

Low T: liquid High T: *barely coupled moments* Rozen et al. 2021, Saito et al. 2021

Low 1: no resistance peak High T: resistance peak Saito et al. 2021

Zero-energy peak at low T Device A $\theta = 1.06^{\circ}, AB = 4$ T = 400 mK1.13° AA site_+4 CI V_{Gate} (V) Вu 0 C -2 -2

60

–60 0 V_{Bias} (mV) Choi et al. 2021

۷_۵ (mV) Oh et al. 2021, Nuckolls et al. 2020,

10 20

-10 0

-30 -20

Quantum dot behavior at high T

ehavior at high T

NRG calculation

Truncate Hilbert space every step

At an early stage (higher temp), lowest state is LM [1] (U(4) irrep)

→ "Pomeranchuck effect" in experiments ?

Local moments

At nu=1,

- local moments at early stage RG \rightarrow LM at higher T
- Fermi liquid at later stage RG \rightarrow FL at lower T
- => Not pomeranchuck (a phase transition), but a cross-over from Kondo screening to free moments!

Spin-susceptibility

- const. as T \rightarrow 0, FL phase
- Cuire's law at higher T, LM phase

Entropy

- 0 as T \rightarrow 0, FL phase
- At nu=1, log 4 around T~10K, due to the four fold LM1

Comparision with Exps Entropy curve as a function of nu at T~10K

Two-peak-one-dip feature: non-monotonous TK

Rozen et al. 2021, Saito et al. 2021

PRL 129, 047601 (2022), PRB 109, 045419 (2024), arXiv:2402.00869 (2024) **Experimental predictions**

Temperature dependent energy surfaces

- Construction of Topological Heavy-Fermion Model
- Summary of the correlation physics
- Pairing mechanism

Superconductor phase

A single-site problem

Motivation: Onsite pairing as in A_3C_{60} ?

Dodaro, Kivelson et al., PRB **98**, 075154 (2018) Angeli, Fabrizio et al., PRX **9**, 041010 (2019), Blason, Fabrizio, PRB **106**, 235112 (2022)

Stating point: Anderson impurity model from self-consistent DMFT

$$H_{I1} = \frac{U}{2} \sum_{\alpha\eta s} \sum_{\alpha'\eta's'} f^{\dagger}_{\alpha\eta s} f^{\dagger}_{\alpha'\eta's'} f_{\alpha'\eta's'} f_{\alpha\eta s}$$

Parameters:

- F-occupation: $|v_f| \approx 2$
- Kondo temperature T_K

 $f_{\beta\eta s}^{\dagger}$ • orbital a.m. $(-)^{\beta-1}\eta \pmod{3}$ • valley charge $\eta = \pm$

• spin $s = \uparrow, \downarrow$

 $\Delta(\omega) \approx \Delta_0 \cdot \operatorname{sgn}(\omega)$

$U \approx 58 \text{meV}$

S₀+H₁₁ faithfully characterizes low energy Kondo physics

arXiv:2402.00869 (2024)

Other interactions

Electron-phonon coupling: (K-phonon)

Strong EPC

Cheng et al. (2023) arXiv

honon) honon) $(c) A_1, \hat{u}_a$ $(d) B_1, \hat{u}_b$ $(d) B_1, \hat{u}_b$ $(d) B_1, \hat{u}_$

Valley Jahn-Teller effect:

Angeli, Fabrizio et al., PRX **9**, 041010 (2019)

BCS pairing (assuming U=0) s-wave is more favored than d-wave

Wu, MacDonald et al., PRL **121**, 257001 (2018) Liu, Bernevig, arXiv:2303.15551 (2023)

Effective interaction on heavy fermion basis

Anti-Hund's coupling:

- JA = 1.3meV << U=58meV
- JA may be enhanced by 1-3 times by renormalization Basko, PRB 77, 041409 (2008)

Mesoscopic orbitals coupled to microscopic phonons <-> A3C60

Other interactions

Hubbard U₀ at carbon atom

Parameter: U0 ~ 3-9eV Role: forbid double occupation

Wehling et al., PRL 106, 236805 (2011), Wu, MacDonald et al., PRL **121**, 257001 (2018) Zhang, Liu et al., PRL 128 026403 (2022) Penalty to intra-orbital singlet

Hund's coupling: $J_H \sim 1- 3meV$ $J_H' \approx \frac{J_H}{3}$

 U_0

Penalty to inter-orbital singlet

Large overlap between $\alpha = 1, 2$ and AB sublattice!!!

A two particle problem

motivated by $|v_f| \approx 2$

arXiv:2402.00869 (2024)

$\begin{array}{c} \underbrace{III \text{ NO PAIRING DUE TO PROHIBITIVE U III}}_{E_2 \text{ states }} f^{\dagger}_{\alpha+\uparrow} f^{\dagger}_{\overline{\alpha}-\downarrow} - (\uparrow \leftrightarrow \downarrow) \\ E = U - 2J_A + 8/3J_H \end{array} \qquad \begin{array}{c} \underbrace{U_0}_{A \text{ K}} & \underbrace{U_$

 $A_{1} \text{ state } f_{1+\uparrow}^{\dagger} f_{1-\downarrow}^{\dagger} + f_{2+\uparrow}^{\dagger} f_{2-\downarrow}^{\dagger} - (\uparrow \leftrightarrow \downarrow)$ $E = U - J_{A} + 2/3 J_{H}$

We need to derive the **exact** Γ

arXiv:2402.00869 (2024) An (almost) SOLVABLE limit: T_K<<J_{A,H}

Physical susceptibilities

$f^{\dagger}_{\alpha+\uparrow}f^{\dagger}_{\overline{\alpha}-\downarrow} - (\uparrow \leftrightarrow \downarrow)$	A 2D Hilbert space
---	--------------------

- Frozen charge $\rightarrow \chi^c = 0 \ (\ll T_K^{-1})$
- Frozen spin $\rightarrow \chi^s = 0$
- Frozen orbital $\rightarrow \chi^o = 0$
- Frozen valley $\rightarrow \chi^{\nu} = 0$
- Fluctuating angular momentum $\rightarrow \chi^a \sim T_K^{-1}$

$$\widetilde{U}_1 = -2\pi\widetilde{\Delta}_0, \quad \widetilde{U}_{2,3} = 2\pi\widetilde{\Delta}_0 - \frac{\widetilde{\mathcal{J}}}{2}, \quad \widetilde{U}_4 = -2\pi\widetilde{\Delta}_0 + \widetilde{\mathcal{J}}$$

Applying this to standard Anderson impurity

- $\widetilde{U} = \pi \widetilde{\Delta}_0$: same as Bethe ansatz solution
- Applicable to U(n)XSU(2) model

Hewson (1993), Nishikawa (2010)

Two-particle energies

- Inter-valley E_2 singlet: $-2\pi \widetilde{\Delta}_0 \widetilde{\mathcal{I}}$
- Inter-valley E_2 triplet: $-2\pi \tilde{\Delta}_0 + \tilde{J}$
- Intra-valley intra orbital singlet: $-2\pi \,\widetilde{\Delta}_0 + \tilde{\mathcal{I}}$
- Inter-valley intra-orbital: $2\pi \widetilde{\Delta}_0 \frac{1}{2}\widetilde{\mathcal{I}}$
- Inter-valley intra-orbital: $2\pi \widetilde{\Delta}_0 + \frac{1}{2}\widetilde{J}$

One of them must be negative !! Hence renormalized interaction has pairing channel!

- Stability of the Fermi liquid requires:
- $\tilde{\mathcal{I}} = k \cdot \tilde{\Delta}_0 > 0, \ k \in (4.6, 10.3)$
- k should be a universal constant
- \rightarrow The E_2 singlet is most favored.

Crossover from $T_K \ll J_{A,H}$ to $J_{A,H} \ll T_K \ll U$

The $J_{A,H} \ll T_K \ll U$ limit

As J << TK << U, multiplet splitting is irrelevant \rightarrow an approximate U(8) symmetry at T_K scale

- $\mathcal{I} = 0 (\langle \langle T_{\mathcal{K}} \rangle)$
- $U_{1,2,3,4} = U$
- Frozen charge $\rightarrow \chi^o = 0$
- No pairing

$$\widetilde{U}_{1,2,3,4} = \frac{2\pi}{7} \widetilde{\Delta}_0$$

previously obtained in by Nishikawa, Hewson et al. (2010)

Crossover

•
$$\mathbf{T}_{\mathbf{K}} < < \mathbf{J}_{\mathbf{A},\mathbf{H}} : -(2\pi + k)\widetilde{\Delta}_0$$

Renormalized pairing potential

•
$$J_{A,H} \ll T_K \ll U : \frac{2\pi}{7} \widetilde{\Delta}_0$$

•
$$T_{K} > U : U$$

Irreducible vertex in pairing channel

Full vertex can be decomposed into 2PI diagrams

$$U_1^{\mathrm{p}} - \mathcal{J}^{\mathrm{p}} = \frac{\widetilde{U}_1 - \widetilde{\mathcal{J}}}{1 - \frac{1}{4\widetilde{\Delta}_0}(\widetilde{U}_1 - \widetilde{\mathcal{J}})} = -\frac{(2\pi + k)}{1 + \frac{2\pi + k}{4}}\widetilde{\Delta}_0$$

• Slightly weaker than full vertex

The local pairing fluctuation \rightarrow SC on lattice

2PI serves as effective interaction on lattice

SC susceptibility on lattice:

Georges, Kotliar, et al., RMP (1996)

- Construction of Topological Heavy-Fermion Model
- Summary of the correlation physics
- Pairing mechanism

Superconductor phase

Renormalized lattice model

The free part: heavy Fermi liquid

Interacting pai

R

 $=\frac{U_1^{\mathbf{p}}-\mathcal{J}^{\mathbf{p}}}{2}$

$$\epsilon_{f} \sum_{\mathbf{k}} \tilde{f}_{\mathbf{k}}^{\dagger} \tilde{f}_{\mathbf{k}} + c_{\mathbf{k}}^{\dagger} \mathcal{H}^{(c)}(\mathbf{k}) c_{\mathbf{k}} + z^{\frac{1}{2}} \begin{bmatrix} c_{\mathbf{k}}^{\dagger} \mathcal{H}^{(cf)}(\mathbf{k}) \tilde{f}_{\mathbf{k}} + h.c. \end{bmatrix}$$
• Parameters:
• TK=0.1-1meV
• TK=0.1-1meV
• Z=0.1-0.3
• TK=0.1-1meV
• Z=0.1-1meV
• Z=0.1-0.3
• TK=0.1-1meV
• Z=0.1-1meV
• Z=0.1-

Strong coupling features

Energy scale

- $E_F \sim T_K$ • $U_p - J_p \sim 4 T_K > E_F$
- BEC rather than BCS!

Oh et al. (2021) Nature

Coherence establishes at lower energy than pairing

Real space picture

• Coherence length: • Kondo cloud $\frac{v_F}{T_K} \sim \frac{1}{k_F} \sim a \text{ few } a_M$

\checkmark Small coherence length

Cao et al. (2018) Nature Lu et al. (2019) Nature

Summary

- Explain how the weak attraction wins over U
- Consistent with the following experiments:
 - Nematicity
 - V-shaped gap
 - Tc >> gap
 - Small coherence length
 - SC enhanced by suppressing U, introducing SOC

Predictions

- The (gapped) p-wave like nodal structure
- Non-monotonous dependence of Tc on U

Acknowledgement

Yi-Jie Wang (王一杰) Peking University

Geng-Dong Zhou (周耿栋) Peking University

Biao Lian (廉骉) Princeton University

Ning-Hua Tong (同宁华) Renmin University

Shiyu Peng (彭士宇) Caltech

Xi Dai (戴希) HKUSTC

Seung-Sup Lee (Seoul National University)

B. Andrei Bernevig Princeton University

