Solvable Models for Strange Metals

## **Erez Berg**



# Outline

• What is a strange metal?

• A view from the large-N limit

 Strange metal from superconducting puddles



# **Resistivity of a conventional metal**



# What is a strange metal?

A metal that cannot be explained by the conventional paradigm (Fermi liquid)+Boltzmann theory In the limit  $T \rightarrow 0$ .

Common diagnostic: the resistivity  $\rho(T) = \rho_0 + AT^{\alpha}$ With  $\alpha < 2$  (often  $\alpha = 1$ )



Daou,...,Taillefer (2009)

Jaoui,...,Efetov (2022)

# What is a strange metal?

In a Fermi liquid, 
$$\frac{1}{\tau} \propto \max(T^2, \varepsilon^2)$$



# **Strange metal**

 $\frac{1}{\tau} \propto \max(T^{\alpha}, \varepsilon^{\alpha}) \text{ requires high DOS}$ of low-energy excitations

VHS in 2D with  $\nu(\varepsilon) \propto \nu_0 \log \frac{W}{\varepsilon}$  gives  $\rho(T) \propto T^2 \ln \frac{W}{T}$ 



# Strain Turning through VHS Sr<sub>2</sub>RuO<sub>4</sub>



Resistivity at  $\varepsilon_{VHS}$  consistent with  $\rho \sim T^2 \log(1/T)$  *Mousatov, EB, Hartnoll (2020); Stangier, EB, Schmalian (2022)* 



# Strange metal from flat+itinerant bands?

What DOS gives  $\rho - \rho_0 \propto T$ ?



Mousatov, EB, Hartnoll (2020)

### **Quantum Critical Point?**

$$\rho \propto T$$
,  $\frac{c}{T} \propto \log \frac{1}{T}$  in metals tuned to a QCP



# Outline

What is a strange metal?

• A view from the large-N limit

 Strange metal from superconducting puddles



### "Standard models" of strongly correlated electrons

*N*-band Hubbard models:



## "Standard models" of strongly correlated electrons

 $N \rightarrow \infty$  limit



- Introduce a symmetry (exact or statistical) between the orbitals
- Large number of degrees of freedom acts like a "bath"

#### But...

• Readily access non-perturbative, "non-quasiparticle" regimes!

#### **Higher dimensional extension**



Other lattice generalizations of SYK: *Parcollet, Georges; Gu, Qi, Stanford; Song, Jian, Balents; C. Xu et al; Patel, Sachdev et al.;...* 

#### **Electron self-energy**



$$\Sigma(\omega_n) \sim i \frac{J}{W} \omega_n \ (\Sigma \ll W;$$
  
"correlated FL")

$$\omega_n, T \ll \frac{W^2}{J}$$

$$\Sigma(\omega_n) \sim i\sqrt{J|\omega_n|} \operatorname{sgn}(\omega_n) \qquad \omega_n, T \gg \frac{W^2}{J}$$

$$\Sigma \gg W; \text{ "Incoherent Metal"}$$

D. Chowdhury, Y. Werman, EB, T. Senthil, PRX (2018)

## Extended strange metallic behavior from SC puddles







JörgNogaEvyatarSteve KivelsonAkshat PandeychmalianBashanTulipman(KIT)(WIS)(Stanford)

# Strange transport in correlated metals



La<sub>2-x</sub>Sr<sub>x</sub>CuO<sub>4</sub> Cooper,..., Hussey (09')

 $\rho \propto T$  over extended doping range: Critical *phase*?

Linear in T regime terminates approximately at the end of SC dome



Review: Taillefer (10')

# Superconducting "puddles" in overdoped cuprates



# Superconducting "puddles" in overdoped cuprates

# Gap inhomogeneity revealed in STM



K. Gomez ..., A. Yazdani, Nature (07') W. Tromp, ..., M. Allan, Nature Mat. (23') Superfluid density (overdoped LSCO)

![](_page_17_Figure_5.jpeg)

Further evidence: optical conductivity, specific heat H.-H. Wen (04'); J. Wade (94'); F. Mahmood,..., P. Armitage (19')

Theory: Z.-X. Li, S. Kivelson, D.-H. Lee (21')

## Superconducting "puddles"

#### Inelastic Andreev scattering

![](_page_18_Figure_2.jpeg)

#### Extended $\rho \propto T$ regime?

![](_page_18_Figure_4.jpeg)

### Model

![](_page_19_Figure_1.jpeg)

$$H_{\text{int}} = \sum_{k,k'} g_{\perp}(k,k') e^{i\widehat{\theta}} c_{k,\uparrow} c_{k',\downarrow} + h.c$$
$$+ \sum_{k,k',s} g_{z}(k,k') \,\widehat{n} \, c_{k,s}^{\dagger} c_{k',s},$$

### Model

At low energies,  $E \ll U_r$  (renormalized charging energy): Project to two low-lying levels

$$H_{\rm pud} \rightarrow -\frac{\Delta}{2}\sigma^z$$
,

$$\begin{split} H_{\rm int} &\to \sum_{k,k'} g_{\perp}(k,k') \sigma^+ c_{k,\uparrow} c_{k',\downarrow} + h.c \\ &+ \sum_{k,k',s} \frac{g_z(k,k')}{2} \sigma^z c_{k,s}^{\dagger} c_{k',s}, \\ H_{\rm pud} &\to -\frac{\Delta}{2} \sigma^z, \end{split}$$

C.f.: electrons interacting with localized (charge-neutral) two-level systems:

![](_page_20_Figure_5.jpeg)

N. Bashan, E. Tulipman, J. Schmalian, EB, PRL (24')

# Large-N limit and saddle point equations

$$H_{\text{int}} = \sum_{k,k'} g_{\perp}(k,k') \sigma^+ c_{k,\uparrow} c_{k',\downarrow} + h.c$$
$$+ \sum_{k,k',s} \frac{g_z(k,k')}{2} \sigma^z c_{k,s}^{\dagger} c_{k',s},$$

Treat the matrices  $g_{\perp,z}(k,k')$ as random with a large dimension N

Physically, 
$$N \sim k_F R$$

![](_page_21_Figure_4.jpeg)

# Large-N limit and saddle point equations

Expand the action in g(k, k')

![](_page_22_Picture_2.jpeg)

$$= \sigma^{\dagger}(\tau) \sigma^{-}(\tau) \pi(\tau - \tau')$$

![](_page_22_Figure_4.jpeg)

Spin coupled to harmonic bosonic bath with correlator  $\Pi(\tau)$ 

"Spin-boson" problem!

# Model

 $U_r \sim Ue^{-\alpha_{\perp}}$  Dimensionless coupling:  $\alpha_{\perp} = \sum_{k,k'} \frac{|g_{\perp}|^2}{v_k v_{k'}}$ 

**RG equations:**\*

 $\alpha_{\perp}$  marginally irrelevant

$$\partial_{\ell} \alpha_{\perp} = -2\alpha_{\perp}^{2}$$
$$\partial_{\ell} \Delta = (1 - 2\alpha_{\perp}) \Delta$$

 $\Delta$  uniformly distributed in  $[-U_r, U_r]$ 

#### Marginal Fermi liquid:

$$\chi''(\Omega) = \overline{\langle \tau^+ \tau^- \rangle_{\Delta}} \sim \frac{n_{\rm p}}{U_r} \max\left(\frac{|\Omega|}{T}, 1\right) \, \text{sgn}(\Omega)$$
$$\rho(T) \sim \frac{h}{e^2} \frac{\alpha_\perp n_{\rm p}}{U_r} T$$
$$c(T) \sim T \ln(U_r/T)$$

 $n_{\rm p}$ : concentration of SC puddles

\*lgnoring  $\alpha_z$ 

![](_page_23_Figure_10.jpeg)

#### Why linear in *T*?

![](_page_24_Figure_1.jpeg)

## Low-T breakdown (finite-N corrections)

At low T, the SC impurity is "Kondo screened"

![](_page_25_Figure_2.jpeg)

Charge Kondo scale exponentially suppressed in droplet size

"Infinite-channel Kondo problem" (random g<sub>k,k'</sub>): G. Zarand, G. Zimanyi, F. Wilhelm (00')

## **Summary**

#### Route to solvability: Make it random, make *N* large!

![](_page_26_Picture_2.jpeg)

Strange metal from coupling to SC puddles?

![](_page_26_Picture_4.jpeg)

 $\rho \sim T^{1/\alpha_{\perp}}$   $U_r \sim U e^{-\alpha_{\perp}}$   $\rho \sim T$   $-T_{K-\gamma} U_r e^{-k_F R}$   $\rho \sim T^2$ 

Thank you!

# Model for a marginal Fermi liquid

Model: lattice of Sachdev-Ye-Kitaev (SYK) dots

![](_page_27_Picture_2.jpeg)

![](_page_27_Figure_3.jpeg)

$$H_{c} = \sum_{i=1,k}^{N} \varepsilon_{k} c_{ki}^{\dagger} c_{ki} + \sum_{ijkl=1,r}^{N} \frac{U_{ijkl}}{N^{3/2}} c_{ri}^{\dagger} c_{rj}^{\dagger} c_{rk} c_{rl} + \sum_{ij=1,r}^{N} \frac{W_{ij,r}}{N^{1/2}} c_{ri}^{\dagger} c_{rj}$$

 $U_{ijkl} = 0$ ,  $\overline{U_{ijkl}^2} = U^2$  **Translationally invariant** in every realization

"Kondo lattice": Two bands c, f with bandwidths  $W_f \ll W_c$ 

$$H = H_{c} + H_{f} + \sum_{ijkl=1,r}^{N} \frac{V_{ijkl}}{N^{3/2}} c_{ri}^{\dagger} c_{rj} f_{rk}^{\dagger} f_{rl}$$

D. Chowdhury, Y. Werman, EB, T. Senthil, PRX (2018) See also: A. Patel, J. McGreevy, D. Arovas, S. Sachdev, PRX (2018)